
I : :F~'1 Research 
A CHURCH-ROSSER PROPERTY OF 
CLOSED APPLICATIVE LANGUAGES 

Paul McJones 

May 23, 1975 

RJ 1589 

~ 
I 



Copies may be requested from: 
IBM Thomas 1. Watson Research Center 
Post Office Box 218 
Yorktown Heights, New York 10598 



RJ 1589 (#23713) 
May 23, 1975 
Computer Science 

A CHURCH-ROSSER PROPERTY OF CLOSED APPLICATIVE LANGUAGES 

by 

Paul McJones 

IBM Research Laboratory 
San Jose, California 95193 

ABSTRACT: In "Programming Language Semantics and Closed 
ApplicaUve Languages" [IBM Research Report RJ1245], 
John Backus defines the class of closed applicative 
languages (of which his Red is a member), and states some 
of their properties. One of the most interesting is a 
Church-Rosser property: if an expression has a meaning, then 
every terminating sequence of reductions on it yields that 
meaning. The purpose of this report is to show how to 
prove this and other properties. 

The approach will be to first construct the meaning 
function (mapping expressions into values) for a closed 
applicative language as the least fixed point of a contin­
uous functional, thus establishing the "mathematical" 
semantics of the language. Then the "operational" notion 
of reduction will be defined in terms of the meaning 
function, and some of its properties verified using 
structural and computational induction. 





1 

1. Some machinery from the fixed point theory is necessary. [See for 

example: Manna, Z., Ness, S., and Vuilleman, J. Inductive methods for proving 

properties of programs. ~ 16, 8 (August 1973), 491-502.] A partial 

ordering ~s on a set S is a relation with the following three properties: 

reflexivity: a~Sa 

transitivity: a~Sb, b~Sc implies a~Sc 

antisymmetry: a~Sb, b~Sa implies a=b 

for all a,b,c,sS 

A least ~ bound for a subset X of a partially ordered set [po set] S 

is an element asS such that: 

i) x~Sa for all x£X 

and ii) a~Sb for all bsS such that for all XSX, x~Sb. 

If X has a least upper bound, we denote it by lubsX, A poset S is complete 

if it has a least element [usually denoted ~S or, somewhat ambiguously, 

just ~] and if lubSL exists for every nonempty totally ordered LeS. 

If f:Sl~S2' for complete posets Sl,S2' then f is continuous if 

lubs {ft:tsL} exists and equals f(lub
S 

L) for every nonempty totally 
2 1 

ordered L=Sl' The set of all continuous functions from Sl to S2' for 

given complete posets Sl and S2' can itself be given a complete po set 

structure. We let f~g iff f(a)~S g(a), for all asSl • The least element 
2 

is n, defined by n(a)=~S for all asS1• 
2 

A set S is a trivial complete po set if there exists an element ~sSS 

and a relation ~S satisfying a~Sa' iff a=~s or a=a', for all a,a'sS. 

Suppose f:S~~S2 for some trivial complete poset Sl' any complete poset 



2 

S2' and some n~O. Then a condition sufficient to ensure f continuous is 

that f be ~-preserving, that is, f(sl,s2,···,sn)=~S2 whenever any si=~Sl 

(sisSl' l:>i:>n). 

2. Let E be a fixed set of expressions. Both "programs" and "meanings" 

of our closed applicative language [CAL] will lie in this set. We assume 

E is a trivial complete poset; intuitively ~E represents the result of a 

nonterminating evaluation. 

3. The pair <A,K> is a constructor Syntax for E if the following hold [the 

idea is to give an "abstract syntax", postulating only those properties 

relevant to our subsequent discussion without specifying a particular 

representation]: 

CSO) losE 

CS1) AcE rasA is called an atom] 

CS2) For each kSK, there is an integer n~O such that k is a 

lo-preserving function from En into E. [kSK is called an n-place 

constructor] 

CS3) For every esE, exactly ~ of the following holds: 

i) e=lo [in which case e has no components] 

ii) esA [in which case e has no components] 

iii) there is a unique ksK [hence, by CS2, a unique n~O] and 

unique e··· e SE-{~} such that e=k(e ••• e ) [in which 
l' 'n l' 'n 

case the components of e are e··· e ] - l' 'n 

CS4) No expression has an infinite chain of components [so repeated 

applications of CS3 eventually results in atoms and O-place 

constructors]. 



3 

CS4 assures that we can make proofs by structural induction: if a property 

P holds for every expression e whenever it holds for all components of e, 

then P must hold for all expressions in E. [Since L and atoms have no 

components, P must hold for them.] 

4. A specific closed applicative language is determined by two things: 

i) a specific constructor syntax <A,K> with a distinguished 

2-place constructor apsK [called the application constructor] 

ii) a representation function p which is a function from E, to 

functions from E to E. To assure continuity, a legitimate p 

must satisfy: 

pi) (PLE)e=LE for all esE [i.e., pLE=n, the everywhere-L 

function] 

p2) (pe)LE=LE for all esE [i.e., pe is always L-preserving]. 

5. The meaning function for CALs is best given recursively, defining the 

meaning of a composite expression in terms of the meanings of its 

components. The fixed point theory provides a sound basis for such 

definitions: every continuous function f from a complete poset S into 

itself has a unique least fixed point p=lubs{LS,fLS,f(fLS)'ooo} [that is, 

fp=p, and if fq=q, then p~sq, all qsS]. To see why this is useful, 

consider the following definition of a functional T mapping the set of 

continuous E to E functions into itself. [Notational convention: function 

applications associate to the right, so fghx=f(g(hx)).] For every 

continuous E to E function f and for every esE, let 



4 

e if eEA 

k(fel,···,fen ) if e=k(el,···,en) and k ; ap 

f(Pfe l )fe2 if e=ap(e
l
,e2) 

It is tedious but not impossible to show that T is indeed continuous. [As 

discussed in Manna et al., this follows from its composition of known 

continuous functions and the function parameter f.] Now we define ~=f =the 
T 

unique least fixed point of T to be the meaning function of our CAL, and 

claim that it has the properties stated in Backus' report. To substantiate 

this claim, we will use the principle of computational induction: if a 

property P is true of n [the everywhere-~ function], and if P being true 

of f implies that P is true of Tf, then P must be true of f , the least 
T 

fixed point of T. [Technically, P must be an admissable predicate, as 

discussed by Manna et al.] 

6. The subset C of E constructed without ap we call constants [as 

justified by proposition 3 below]. We can define C recursively as follows: 

CI) AcC 

C2) If kEK, k;ap, and el,···,enEC, then k(el,···,en)EC 

C3) eEC only by virtue of CI,C2 above. 

7. Based on the definition of ~, we can define a relation R of 

reducibility. An expression e is [directly] reducible to e', eRe', iff: 

or 

• 



5 

some kEK and some i, l~i~n. 

Intuitively eRe' means e' results from e by "performing some innermost 

application". 

8. We will need an additional function 0 mapping expressions into the 

trivial complete poset N={iN,O.1.2,ooo} [with the obvious ~N]. 

Intuitively. oe gives the number of reductions needed to evaluate e. Using 

the fixed point theory. we take 0 to be fa' the unique least fixed point 

of the [reputedly] continuous functional a defined as follows: For every 

continuous E to E function f and for every eEE, let 

f(e )+.oo+f(e ) if e=k(e 000 e) k~ap 1 n 1" n' r 

The propositions below give various properties of ~, R, and 0, 

culminating in the "Church-Rosser property" for CALs. 



6 

Prop. 1. For all e€E, ~e€Cu{~}. 

Proof. We use computational induction. 

Basis: Qe=~ for all e€E, by definition of Q. 

Induction: Assume that fe€Cu{~} for all e€E. We show that 

(Tf)eECu{~} for all eEE. By definition CS3, there 

are three distinct cases. 

Case 1: e=~. Then (Tf)e=~ by definition of T. 

Case 2: e€A. Then (Tf)e=e, and e€C by definition C1. 

Case 3: e=k(el,···,e
n

) for a unique n-place k€K and 

unique el,···,en€E. Two subcases arise. 

i) k~ap. Then (Tf)e=k(fel,···,fen) by definition 

of T, and by induction fei€Cu{~}. Thus by 

definitions C2 and CS2, (Tf)e€Cu{~}. 

ii) k=ap, so e=ap(el ,e2). Then (Tf)e=f(pfel )fe2 

by definition of T. By induction, 

By computational induction ~eECu{~}, where ~=least 

fixed point of T. 

Prop. 2. a) 

b) ~a=a, all a€A 

c) ~k(e ••• e )=k(~e ••• ~e) k~ap 
l' , n 1" n' 

d) 

Proof. Use the fact that ~=T~ I~ is a fixed point of T], together 

with the definition of T. 



7 

Prop. 3. For all eECu{~}, ~e=e. 

Proof. We show that if for every component e' of e, e'ECu{~} implies 

~e'=e', then ~e=e for all eECu{~}. The proposition follows by 

structural induction. Definition CS3 leads to three distinct 

cases. 

Case 1: 

Case 2: 

Case 3: 

e=~. Then ~e=e by proposition 2a. 

eEA. Then ~e=e by proposition 2b. 

e=k(el,"',en ) for a unique n-place kEK and 

unique el,"',enEE, and we assume the proposition 

holds for each e i , l~i~n. If k=ap then etC, so 

assume k1ap. By definition Cl-C3, if eEC then 

each eiEC, l~i~n. Then by induction ~ei=ei' l~i~n. 

Thus ~e=k(~e .•• ~e )=k(e ••• e )=e. 
l' 'n l' 'n 

Prop. 4. Cu{~} is the set of fixed points of ~, so ~=~o~ I~ is idempotent]. 

Proof. By proposition 3, ~ and the elements of C are all fixed points of 

~. Conversely, if e=~e is a fixed point of ~, then by proposition 

1, eECu{~}. Thus~, whose range is equal to the set of its own 

fixed points, is idempotent. 

Prop. 5. e is reducible Ifor some e', eRe'] if and only if etCu{~}. 

Proof. The proof is by structural induction. We must show that the 

proposition holds for each expression, provided that it holds 

for all components of the given expression. By definition CS3, 

there are three distinct cases to consider. 

Case 1: e=~. By inspection of definition Rl-R2, e is not 



8 

reducible. Further. eECu{!}. Thus e satisfies 

the proposition. 

Case 2: eEA. [Same as case 1 above.] 

Case 3: e=k(e
1
.···.en). for a unique n-p1ace kEK and 

unique e1,···,enEE. There are two subcases of 

interest. 

i) k+ap. Suppose e is reducible [we show e¢Cu{!}]. By 

definition R1-R2, some component e
i 

of e is also 

reducible. By induction, ei¢Cu{!}. Thus by definition 

C1-C3, etC [and of course e+L by assumption]. 

Conversely. suppose e¢Cu{L} [we show e is reducible]. 

Inspection of definition C1-C3 shows we must have ei¢C 

for some component e i of e. Further, ei#L since k is 

L-preserving [definition CS2]. By induction. eiRe~ 

for some e'EE so eRk(e ••• e' ... e ) follows from 
i ' 1" i' 'n 

definition R2. 

ii) k=ap. so e=ap(e1 ,e2)+L. Then e¢Cu{!}, so we must find 

e'EE with eRe', If both e
1

EC and e 2EC, definition R1 

gives us eR(pe1)e2 , So suppose e
1
¢c. By definition 

CS2, e
1

=L is impossible, so by induction there exists 

eiEE with e1Rei' Thus eRap(ei,e2) by definition R2. 

[The final possibility, e
1

EC but e 2¢C, is treated the 

same way.] 



9 

Prop. 6. If e is reducible to e', then ~e=~e' [R preserves ~]. 

Proof. We show the proposition holds for every expression whose 

components all satisfy the proposition. Then we can conclude by 

structural induction that the proposition holds for all esE. 

Definition CS3 partitions E into three classes: {~}, A, and the 

"constructed expressions". 

Case 1: 

Case 2: 

Case 3: 

e=~. Then by proposition 5, e is irreducible. 

esA. Then esC, so again by proposition 5, e is 

irreducible. 

e=k(e ••• e ) for a unique n-place ksK and 
l' 'n 

unique el,···,ensE. We consider two subcases. 

i) kfap. Suppose eRe'. Then by definition Rl-R2, we must 

have eiRei for some component of ei of e, and 

e'=k(e ••• e' ... e ) 
l' , i' 'n· Now ~ei=~ei by induction, so 

"e=k("e "'''e "'''e )=k("e ••• "e' "'''e )="e' '"' '"'I' ''"'i' ''"'n '"'I' ''"'i' ''"'n'"'· 

ii) k=ap, so e=ap(el ,e2). If both else and e 2sC, then 

eR(pel )e2 by definition Rl. Further, ~el=el and 

~e2=e2 [proposition 3], so ~e=~(p~el)~e2=~(pel)e2. 

On the other hand, if one of the components e
l

,e2 is 

nonconstant then it must be reducible. Reasoning 

similar to case i above shows that e is reducible 

to an e' with ~e=~e'. 

Prop. 7. If ~ef~, then oef~. 

Proof. The proof is by "parallel computational induction": if p(Q,m, 

and P(f,g) implies P(Tf,crg) for an admissible predicate P, we can 



10 

deduce P(f ,g ), where f ,g are the least fixed points of T, 0 
TOT a 

respectively. Our predicate P(f,g) is: if ferl, then fe=~e and 

gerl. [The clause relating f and ~ is needed in the induction 

step.] T and a are the defining functionals of ~ and 6, 

respectively. 

Basis: [P(Q,Q)]. fe=Qe=l for all eEE, by definition of Q. 

Induction: Assume P(f.g) holds; we must show p(Tf.ag), that 

is, if (Tf)erl. then (Tf)e=~e and (ag)erl. By 

definition CS3, there are three distinct cases to 

consider. 

Case 1: e=l. Then (Tf)e=l by definition of T. 

Case 2: eEA. Then (Tf)e=e by definition of T, and e=~e, by 

proposition 2b. Also (og)e=Orl, by definition of 

o. 

Case 3: e=k(el.···,en ) for a unique n-place kEK and unique 

(Tf)e=k(fel···,fen ) [def. of T; note feirl by CS2] 

=k(~el,···,~en) [by the inductive assumption, P(f,g)] 

= ~e Iby proposition 2c]. 

Additionally, (og)e!l, for (og)e=gel+"'+gen by 

definition of T, and geirl by inductive assumption. 

ii) k=ap, so e=ap(el ,e2). Note that f must be l-preserving. 

IBy inductive assumption, either fl=l or fl=~l. But 

~l=l. by proposition 2a.] Thus if we assume (Tf)e 



11 

general assumptions on p, fe11L and fe2lL. fe1=~e1' 

fe2=~e2' and f(pfe1)fe2=~(pfe1)fe2=~(p~e1)~e2 follow 

by induction and substitution. This proves (Tf)e=~e. 

We must still show that (ag)e=1+ge1+ge2+g(p~e1)~e2IL. 

Since fe1#L and fe2#L, ge1rL and ge2#L follow by 

induction. Also g(p~e1)~e2#L, because f(Pfe1)fe2IL, 

fel=~el' and fe2=~e2 [as was shown above]. Thus 

(ag)e#L. 

Prop. 8. For all e£C, ce=O 

Proof. By structural induction on e. There are, by CS3, three distinct 

cases. 

Case 1: 

Case 2: 

Case 3: 

e=~ •. Then etC, by definition C1-C3. 

e£A. Then ce=(ac)e, since C is a fixed point of a. 

But (ac)e=O for all e£A, by definition of a. 

e=k(el,""",en), for unique n-p1ace k£K and 

el,""",en£E. Two subcases arise. 

i) k#ap. If e£C then by definition C1-C3, ei£C for l~i~n. 

By induction oei=O, l~i~n. So oe=oel+"""+oen=O. 

ii) k=ap. Then e=ap(el e2)¢C. 

Prop. 9. If ~er~ and eRe', then ce=oe'+l 

Proof. Suppose ~el~ and eRe'. By proposition 6, ~e'=~e+L; hence by 

proposition 7, ce#L and oe'+~. We prove the relationship 

ce=ce'+l using structural induction on e. By CS3, there are 



12 

three distinct cases to consider. 

Case 1: e=~. Then ~e=~. by proposition 2a. 

Case 2: eEA. Then eEC. so e is irreducible by proposition 

5. 

Case 3: e=k(e1.···.en ) for unique n-place kEK and 

el.···.enEE. There are two subcases. 

i) kfap. Suppose eRe'. By definition R2. e'=k(e1 ••••• 

e~.···.en) for some e~EE with eiRe~. Since ~e=k(~e1' 

···.~ei.···.~en)1~ and k is ~-preserving [by CS2], 

~ei1~. By induction, oei=oe~+l. Thus 

oe=oe +···+oe +···+oe 
1 i n 

=oel+···+(oe~+l)+···+oen 

=(oe1+···+oei+···+oen)+1=oe'+1. 

ii) k=ap, so e=ap(e1 .e2) for unique e1,e2EE. If 

el¢C and/or e2¢C, the reasoning is analogous to case i 

above. So here assume e l .e2EC and eRe'. By definition 

R1 we must have e'=(pe1)e2• Thus 

oe=1+oe1+oe2+0(p~el)~e2 [since oe=(ao)e] 

=1+0+0+0(p~el)~e2 [by proposition 8] 

=1+0 (pe
1

)e2 [by proposition 3] 

=l+oe' • 

Prop. 10. If ~e~~, then every sequence of reductions on e converges to ~e 

[in exactly oe steps]. 

Proof. A sequence of reductions on e is a [finite or infinite] sequence 



13 

Thus we wish to show that if ~e~~, the sequence is of length oe 

[which, by proposition 7, is not ~], and that eoe=~e. 

Since ~eO=~e;'~ and R preserves ~ [proposition 6]. it follows by 

induction that the meanings of all expressions in the sequence 

are identical. If, for some n~O. there is no e' with eRe' then 
n • 

e EC [proposition 5], so ~e=~e =e [proposition 3]. Thus if the n n n 

sequence terminates, it terminates in ~e. 

But the sequence must terminate. for oeO,oel .oe2•••• is a 

decreasing sequence of natural numbers [proposition 9]. Suppose 

e is the last term, that is, ~e =e EC. Then oe =0 [proposition n n n n 

8], so oeO=oel +I=(oe2+1)+I=···=oen+n=n. the number of steps in 

any reduction sequence for e. 

ACKNOWLEDGEMENTS 

I am indebted to John Backus and Jim Gray for their careful reading 

and constructive criticism of the manuscript. and to Barry Rosen for much 

information on complete posets and their application to closed applicative 

languages. 


	Abstract
	Page 1
	Proposition 1, 2
	Proposition 3-5
	Proposition 6, 7
	Proposition 8, 9
	Proposition 10
	Acknowledgements

