
·'· An Overview of th.e CAL Time-Sharing System" 

by Butler W. Lampson 

Computer Center 
Unlversity of Californ[a 

Berkeley 



Introduction 

A considerable amount of bitter experience in the design of operating 

systems has been accumulated in the last few years, both by the designers 

of systems which are currently in use and by those who have been forced to 

use them. As a result, many people have been led to the conclusion that 

some radical changes must be made, both in the way we think about the 

functions of operating systems and in the way they are implemented. Of 

course, these are not unrelated topics, but it is often convenient to organ

ize ideas around the two axes of function and implementation. 

This paper is concerned with an effort to create more flexible and more 

reliable operating systems built around a very powerful and general protec

tion mechanism. The mechanism is introduced at a low level and is then used 

to construct the rest of the system, which thus derives the same advantages 

from its existence as do user programs operating with the system. The 

entire design is based on two central ideas. The first of these is that an 

operating system should be constructed in layers, each one of which creates 

a different and hopefully more convenient environment in which the next 

higher layer can function.
3 

In the lower layers a bare machine provided 

by the hardware manufacturer is converted into a large number of user machines 

which are given access to common resources such as processor time and storage 
6 space in a controlled manner. In the higher layers these user machines are 

made easy for programs and users at terminals to operate. Thus as we rise 

through the layers we observe two trends: 

a. the consequences of an error become less severe 

b. the facilities provided become more elaborate 

At the lower levels we wish to press the analogy with the hardware machine 

very strongly: where the integrity~ the entire system is concerned, the 

operations provided should be as primitive as possible. This is not to say 

that the operatiorsshould not be complete, but that they need not be con

venient. They are to be regarded in the same light as the instructions of 

a central processor. Each operation may in itself do very little, and we 

require only that the entire collection is powerful enough to permit more 

convenient operations to be programmed. 



2 

The main reason for this dogma is clear enough: simple operations are 

more likely to work than complex ones, and if failures are to occur, it is 

very much preferable that they should hurt only one user, rather than the 

entire community. We therefore admit increasing complexity in higher layers, 

until the user at his terminal may find himself invoking extremely elaborate 

procedures. The price to be paid for low-level simplicity is also clear: 

it is additional time to interpret many simple operations and storage to 

maintain multiple representations of essentially the same information. We 

shall return to these points below. It is important to note that users of 

the system other than the designers need not suffer any added inconvenience 

from its adherence to the dogma, since the designers can very well supply, 

at a higher level, programs which simulate the action of the powerful low

level operations to which usersmay be accustomed. They do, however, profit 

from the fact that a different set of operations can be programmed if the 

ones provided by the designer prove unsatisfactory. This point also will 

receive further attention. 

The increased reliability which we hope to obtain from an application 

of the above ideas has two sources. In the first place, careful specifica

tion of an orderly hierarchy of operations will clarify what is going on in 

the system and make it easier to understand. This is the familiar idea of 

modularity. Equally important, however, is a second and less familiar 

point, the other pillar of our system design, which might loosely be called 

'enforced modularity'. It is this: if interactions between layers or 

modules can be forced to take place through defined paths only, then the 

integrity of one layer can be assured regardless of the deviations of a 
4 

higher one. The requirement is a strong one, that no possible action of 

a higher layer, whether accidental or malicious, can affect the functioning 

of a lower one. In general, hardware assistance will be required to achieve 

this goal, although in some cases the discipline imposed by a language such 

as Algol, together with suitable checks on the validity of subscripts, may 

suffice. The reward is that errors can be localized very precisely. No 

longer does the introduction of a new piece of code cast doubt on the 

functioning of the entire system, since it can only affect its own and 

higher layers. 



3 

CAL-TSS 

The above considerations were central to the design of the CAL 

Time-Sharing System. CAL-TSS is a large, general purpose time-
snaring system being developed for the dual-processor Control Data 6400 at 

the University of California, Berkeley. We present here a brief sketch of 

the important features ·bf this ·system. 

Four aspectsof the hardware are important to us (see figure 1). 

1. The two processors have independent main core memories and communi
cate through the extended core storage (ECS), which has a latency 
of 4 microseconds and is capable of transferring ten words of 60 
bits each in one microsecond. This means that a program of 10,000 
words or about 30,000 instructions can be swapped into core in one 
millisecond. The ECS is regarded as the norm.al repository for 
active data. Only one user program at a time is held in each main 
core memory. 

2. Each processor has very simple memory protection and mapping con
sisting of a relocation register and a bounds register. 

3. The entire state of a processor (i.e. all the information not in 
memory which is required to define a running program) can be 
switched in 2 microseconds. 

4. Input/output is handled by ten peripheral processors for each 
central processor. They all run independently, each with its own 
4K x 12-bit memory. All can access through main memory (but not 
ECS), all can switch the state of the central processor, and all 
have exactly the same access to the input/output devices of the 
system. There are no interrupts. 

The software is organized into a basic system, called the ECS system, 

which runs on the bare machines and is a single (lowest) layer for protec

tion purposes, and any number of modules which may form higher layers. The 

ECS system implements a small number of basic types of objects, each one of 

which can be named and referred to independently (see figure 2). 

Data in the system is stored in files. Each file is an ordered sequence 

of words which are numbered starting at 0. Operations exist to address a 

block of words in a file and transfer data between the block and memory. 



4 

A process is a vehicle for the execution of programs, a logical pro

cessor which shares the physical processor with other programs. 5 It con

sists of a machine state, some resources which it expends in doing work, 

and some additional structure to describe its memory and its access to 

objects (see figure 3). The details of this structure are the subject 

of later sections of this paper. 

Processes communicate through shared files or through event channels, 

which are first-in first-out queues of one-word messages or events. A pro

cess may try to read an event from one of a list of event channels, and it 

will be blocked from further execution until an event is sent to one of the 

channels by another process. Many processes may be blocked on the same 

event channel, and many events may be sent to one channel before any process 

comes to read them. 

Allocation blocks are used to control and account for the expenditure 

of system resources, which in the ECS system are only storage space in ECS 

and CPU time. Every object in the system is owned by an allocation block, 

which provides the resources for the space the object takes up and accu

mulates changes for the word-seconds of storage expended in keeping the 

object in existence. Allocation blocks also allow all the objects in the 

system to be found, since they form a tree structure rooted in a single 

block belonging to the system. 

The remaining types of objects in the ECS system are closely related 

to the subject matter of this paper, and we now turn to consider them in 

more detail. 

Names and Access Rights 

All objects in the system are named by capabilities, which are kept in 

capability lists or C-lists.
2 

These lists are like the memory of a rather 

peculiar two-address machine, in the sense that operations exist to zero 

C-list entries and to copy capabilities from entry i of C-list A to entry 

j of C-list B. In addition, any operation which creates an object deposits 



a capability for it in a designated C-list entry. The function of a 

capability is two-fold: 

1. it names an object in the system 

2. it establishes a right to do certain things with the object. 

5 

At ;my given time a process has a single workiQg C-list W. A capability 

is referenced by specifying an entry in w; the i-th entry will be referred 

to as WI-i.]. Since C-lists are objects which can themselves be named by 

capabilities, it is possible to specify capabilities in more complex ways; 

e.g., W[i}[j] would be the j-th entry of the C-list named by the capability 

in the ,z.-th entry of W. In the interests of simplicity, however, all capa

bilities passed to operations in the ECS system must be in W, and they are 

specified by integers which refer to entries of W. 

In this rather obvious way a capability, which is the protected name 

of an object (i.e. it cannot be altered by a program) itself acquires an 

unprotected name. The integrity of the protection system is preserved 

because only capabilities in W can be so named. The fact that a capability 

is in W is thus construed as prima facie evidence that the process has the 

right to access the object which it names. From this foundation a complex 

directed graph of C-lists may be built up which provides a great deal of 

flexibility and convenience in the manipulation of access rights, although 

it is still limited in certain important respects which we shall explore 

later. 

A capability is actually implemented as two 60-bit words (figure 4). 

The type field is an integer between 1 and 7 if the capability is for an 

object defined by the ECS system. Other values of the type are for user

created capabilities which are discussed below. The MOT index points to 

an entry in the Master Object Table, which in turn tells where to find the 

object, i.e. gives its address in ECS. 

The unique name, guaranteed to be different for each ~bject in the sys

tem, must be the same in the capability and in the MOT entry. This require

ment makes it possible to destroy an object and reuse its MOT entry without 

finding and destroying all the capabilities for it. If we could not do this, 



6 

it would be necessary to severely restrict the copying of capabilities and 

to keep an expensive and error-prone list of back-pointers from each object 

to its capabilities. Two additional henefits obtained from the MOT-unique 

name organization are that 

a. if an object is moved in ECS, only the pointer to it in the MOT 
needs to be updated, since all references to the object are made 
by indirection through the MOT. Since the system's storage allo
cation strategy is a first-fit search of free blocks, followed by 
a compacting of free space if no block is big enough, it is essen
tial to be able to move obejcts. 

b. if some damage is accidentally done to a capability, it is extremely 
unlikely that the damaged capability can be used improperly, since 
the chance that the unique name will match with the one in the MOT 
is small. 

It is worthwhile to note that a slightly modified version of this scheme, in 

which the MOT index is dispensed with and the object is found by association 

on the unique name, is also possible, although significantly more expensive 

to use. 

The option bits field of a capability serves as an extension of the type. 

Each bit of the field should be thought of as authorizing some kind of opera

tion on the object if it is set. A file capability, for example, has option 

bits authorizing reading, writing, deletion, and various more obscure func

tions. The operation which copies a capability allows any of the option bits 

to be turned off, so that weaker capabilities can easily be made from a given 

one in a systematic way without a host of special operations. The interpre

tation of option bits is also systematized, by the system's treatment of 

operations, to which we now turn. 

Operations 

Operations can be thought of as the instruction set of a user machine 

created by the system, or as the means by which a program examines and modifies 

its environment. Viewing them in these ways, we want them to have the following 

features: 

a. operations can be handed out selectively, so that the powers 
exercised by a program can be controlled. 



7 

b. mapping between the names which a program uses to specify opera
tions and the operations themselves can be changed, so that it is 
possible to run a program in an 'envelope' and alter the meaning 
of its references to the outside world. 

c. new operations can be created by users which behave in exactly 
the same way as the operations originally provided by the ECS 
system. 

d. a systemactic scheme must exist to handle error conditions which 
may arise during the attempted execution of an operation. 

The first two points are dealt with by treating operations as objects for 

which capabilities are required. 

This means that a process can only call on those operations which it 

finds in its working C-list W. Furthermore, since operations are identified 

only by indices in W, the meaning of a call on operation 3, say, can easily 

be changed by changing the contents of WI3J. When a program starts to exe

cute, it expects to find at pre-arranged locations in W the operations which 

it needs in order to function. All of its communication with the outside world 

is therefore determined by the initial contents of W. 

We now proceed to consider the internal structure of an operation in more 

detail, An operation is a sequence of orders which are numbered starting at 

1. Each order consists of an action and a parameter specification list, which 

is a sequence of parameter specifications (PS). The action tells what to do; 

it is either an ECS system action or a user-defined action (discussed below). 

The PS list describes the parameters which are expected. Each parameter may 

be: 

a. a data word, which is simply a 60-bit number 

b. a capability, in which case the PS specifies the type and the 
option bits which must be on in the actual parameter. 

When the operation is called (see figure 5) a list of prototype actual para

meters must be supplied. Each one is a number. If the corresponding PS for 

order 1 calls for a data word, the number itself becomes the actual parameter; 

if the PS calls for a capability, the number is interpreted as an index in 

W and the capability W[i] becomes the actual parameter, provided that the 

type is correct and all the option bits demanded by the PS are set in W(i]. 



8 

Given an operation, it is possible to create from it a new operation 

in which some of the PS are converted into fixed parameters, i.e. the actual 

parameters for the action are built into the operation and are no longer 

supplied in the prototype actual parameter list. In this way a general 

operation may be specialized in various directions without the addition 

of any significant overhead to a call. 

An action may return values in central registers after it has completed 

successfully. Of course, the caller can pass it files and C-lists in which 

it can return either data or capabilities of arbitrary complexity. It may 

also fail it if meets with some circumstance beyond its competence. In this 

case it has two options: it may return with an error, which is handled by 

mechanisms described later. Alternatively, it may take a failure return. 

The subsequent action of the system depends on the order structure of the 

operation. When the call on the operation is made, the PS list of order 1 

is used to interpret the arguments and the action of order 1 is executed. 

The order level i of the call is set to 1. If the action takes a failure 

return, the system re-examines the operation to see if it has order i+l. 

If not, a failure return is made to the caller. If so,~ is increased by 

1 and order i of the operation is called. 

The rationale behind this rather elaborate mechanism is to allow rela

tively simple operations to be supported by more complex ones. Suppose 

that A is a simple and cheap operation on a file which fails under certain, 

hopefully rare, circumstances. For example A might read from the file 

and might fail if no data are present. Now operation B may be devised 

to recover from the failure of A; it might attempt to obtain the missing 

data from disk storage. From A and B we make the two-order operation 

C = (A,B). A call of C now costs no more than a call of A if the data 

is present in the file. If it is not, B must be called at considerable 

extra cost, but this is hopefully an infrequent occurrence. The alternative 

approach is to call B and have it in turn call A. This is quite unsatis

factory if we are thinking in terms of a system which may eventually have 

many layers, since it requires passage through every layer to reach the most 

basic bottom layer. Such a design is acceptable if each layer expands the 



9 

power of the operation, so that a great deal more work is normally done 

by a call on layer 2 than by a call on layer l; not so when the higher 

layers are present to deal with unusual conditions, however, and normally 

add nothing to the work accomplished. 

User-defined Operations and Protection 

The last section has suggested two ways to look at an operation 

a. as a machine instruction in an extended or user-machine 

b. as a means of communicating with the world outside a program 

A third analogy which is inevitably suggested is with an ordinary subroutine 

call. The crucial difference between a call on an operation and a subroutine 

call is that the fonner involves a change in the capabilities accessible to 

the process, i.e. in the working C-list. This is obviously the case when 

the operation is one defined by the ECS system, since the code which imple

ments the operation is then running entirely outside of the system's protec

tion structure. For a user-defined operation a more formal mechanism must 

exist within the overall protection structure for specifying how the capa

bilities of the process change when the operation is called. 

To this end some additional structure is defined for a process (see 

figure 3). In particular, a new entity called a subprocess is introduced. 

Associated with each subprocess is a working C-list and a map which defines 

the memory of the subprocess. At any given instant the process is executing 

in one active subprocess (or in the ECS system itself) and consequently has 

the working C-list and memory of that subprocess. When the active subprocess 

changes, the memory which the process addresses and the working C-list also 

change, and the process consequently finds itself in a different environment. 

Because a change in the active subprocess (i.e. a transfer of control 

from one subprocess to another) implies a change in capabilities, there must 

be some means for controlling the ways in which such transfers are allowed 

to take place. This is done as follows. A subprocess can only be called by 

calling on an operation which has that subprocess as its action; the means 

for constructing such operations are discussed below. The call proceeds as 

follows: 



10 

a. compute the actual parameter list (APL) 

b. copy a representation of the APL into a fixed place in the memory 
of the subprocess S being called. A data AP is represented 
by its value. A capability AP is copied into W, the 
working C-list of S and is represented by its index in W. Note 
that the representation of the APL could be used as the prototype 
APL for another call on the operation. 

c. start executing in S .:1t a fixed location called the entry _poin:!_. 

This calling mechanism has been designed with some care to have the following 

features: 

l. It is possible to control who can call a subprocess by controlling 
creation and distribution of operations with the necessary action. 

2. Calls can enter the subprocess only at a single point. 

3. The called subprocess need not have either fewer or more capabilities 
than the caller. Any capabilities needed by the called subprocess are 
passed as parameters. If capabilities are to be returned, the 
caller can pass a C-list into which the called subprocess deposits 
the new capabilities. 

4. An operation which calls a subprocess is used exactly like one which 
calls the ECS system or any other subprocess. It is therefore very 
easy to run a program and intercept some or all of its calls on the 
ECS system or on the subprocesses. 

A call operation implies a return. Since we do not want any unnecessary 

restrictions on the depth to which calls can take place or on recursion calls, 

a stack is used to keep track of return points. It is referred to as the call 

stack and is maintained by the ECS system. 

Access to Subprocesses 

The careful reader may have noticed that we have refrained from saying 

that a subprocess is an object in the system. The reasons for this are two

fold. First, a subprocess does not have existence independent of the pro-

cess which contains it. Second, and more important, we wish to have a means 

for referring to 'similar' subprocesses with the same name in different pro

cesses, so that the same user-defined operations can be shared by a number 

of processes. To achieve this goal we introduce the last type of ECS system 

object, which is called a class code and consists simply of a 60-bit number. 

This number is divided into two equal parts, called the permanent and temporal'.}'_ 

parts. There are two operations on class codes: 



11 

1. Create a class code with a new permanent part, never seen before, 
and zero temporary part. 

2. Set the temporary part of a class code. This operation requires 
one of the option bits. to be set. It is therefore possible to 
fix the temporary part also, simply by turning off this bit. 

A class code can be thought of as a rather flexible means for authorizing 

various things to be done without requiririg the possession of a large number 

of individual capabilities. A subprocess, for example, is named by a class 

code. This means that anyone with a capability for the class code can create 

an operation which calls on the subprocess with that name. When the opera

tion is created, a capability for it is returned and can then be passed to 

other processes like any capability. If the class code is passed along with 

it, subprocesses with the same name can be created in several processes and 

called with the same operation. Since the permanent part of a class code 

is unique, there is no·chance that independently created operations will 

name the same subprocess. Furthermore, it is easy to create a subprocess 

which cannot be called by any operation, simply by creating a new class code 

and then using it to name the subprocess. 

The most useful application of the scheme is in connection with sub

systems consisting of a numbef of operations, various files containing code 

and data, and perhaps several subprocesses. All the necessary information 

can be gathered together into one C-list and used to create copies of the 

subsystem (subprocess) in any number of processes. 

Anothe.r application for class codes is built into the ECS system: 

they are used to authorize the creation of user-defined types of capabilities, 

Thus there is an operation which takes a class code and a data word and 

creates a capability (see figure 4) with type given by part of the class code 

and second word given by the data word. Such capabilities will always pro

duce errors if given to ECS system operations, but they may be passed suc

cessfully to user-defined operations. In this way users can create their 

own kinds of objects and take advantage of the ECS system facilities for 

controlling access to them. 

Class codes also provide a mechanism for identifying classes of users 

to the directory system. Rather than give a user capabilities for all files 

he owns, the log on procedure merely gives his process class codes which iden

tify him to the directory system. 



12 

Errors. 

A running program can cause errors in a variety of ways: by violating 

the memory protection, executing undefined operation codes, making improper 

calls on operations. Some orderly method is required for translating these 

errors into calls on other programs which will take responsibility for 

dealing with them. In order to do this, it is necessary to attach to each 

subprocess S another one to which errors should be passed if S is un

willing to handle them. We call this 'next of kin' the father of S and 

insist that the father relation define a tree structure on the subprocesses 

of a process, so that an error condition can be passed from one subprocess 

to another along a path which eventually terminates. 

When an error occurs, it is identified by two integers called the error 

class and the error number. Every subprocess has a bit string called its 

error selection mask (ESM), and is said to accept an error if the bit of its 

ESH selected by the class is on. When an error occurs, a search is made for 

a subprocess A which accepts it, starting with the subprocess in which it 

occurs and proceeding along the path defined by the father pointers. The 

root of the tree structure is assumed to accept all errors. When A is 

found, it is called with the error class and error number as arguments. 

The entire current state of things is thus preserved for A to examine. 

If it wants to patch things up and continue execution, it can just return. 

If it decides to abort the computation, it can force a return to some sub

process farther up the call stack. 

Memory and Maps 

It is fairly obvious that the right to access the memory addressed by a 

program is similar in nature to the right to access a file. Logically, it 

should therefore be controlled by a capability which should be mentioned 

every time an access is made. On a segmented machine this is a very natural 

and satisfactory point of view. 1 Lacking segmentation hardware, however, 

we must adopt a variety of compromises. Further complications are intro

duced by the fact that many machines, including the 6400, do not have address 

spaces large enough to allow all subprocesses to talk about each other's 
I 

memory, much less satisfactory controls on access to it. This section is 



13 

ooncerned with the rather ad hoc schemes adopted in CAL-TSS to deal with 

this problem. More generally, it is of interest for two reasons: 

a. to point out the salient problems. to be faced by any system 

b. to show how unpleasant are the expedients to which unsuitable 
hardware may force us. 

No attempt is made to discuss the problem in the abstract or with any 

generality, and no argument is offered in favor of the devices described 

except expediency on the available hardware. 

The first problem is to find a representation of a process' memory 

when the process is not running and therefore is not in main memory. In 

order to avoid introducing a new kind of object, and to facilitate the sharing 

of read-only code, a scheme suggested by hardware mapping mechanisms has 

been adopted. The memory of a subprocess is defined by a~' which consists 

of a list of entries each of the form: 

memory address rn, file IJ, file address a, length f, read-only flag fl.. 

The strict meaning of such an entry is: 

a. when the process is chosen to run next, f words starting with 
word a in file 6 are transferred into main memory starting at 
word rn (relative to the hardware relocation register) 

b. when the process stops running, the transfer is reversed if Jt=O. 
Otherwise, nothing is done. 

We usually think of this in the terms suggested by figure 6: a section of 

the file is made to correspond to a section of the addressable storage of 

the subprocess. The analogy breaks down if any modification is made to the 

file while the main memory copy produced by the map entry exists; this is 

extremely unfortunate if writeable data bases are to be shared, but unavoid

able. The scheme works very well for sharing read-only programs and data, 

however. Multiple copies need exist only in central memory, which is not a 

precious resource since only one process is allowed to reside there at a 

time because of the very high swap rate. 



14 

The second problem is how one subprocess can access the memory of 

another one. A straightforward solution is to confine data sharing to 

files, but cursory examination reveals that this is extremely inconvenient, 

since the relationship between memory and files established by the map is 

quite indirect. On the other hand, appending the address space of the 

caller to the called program is also unacceptable, both because such a 

sledgehammer approach negates the selectivity of the rest of the protection 

system, and because the sum of the lengths of the two address spaces may 

easily exceed the available central memory. A restricted solution is to 

allow a subprocess to append to its address space the spaces of all its 

descendants along a single path to a leaf of the tree (see figure 7). 

The map for this extended address space is called a full map and is obtained 

by concatenating the maps of the subprocesses involved. It is constructed 

automatically whenever a subprocess calls one of its ancestors, since the 

path to be used is then uniquely defined. With rhis scheme we have achieved: 

a. convenient addressing across subprocess boundaries for all the 
subprocesses on a path held together by father pointers, 

b. a restriction of the total address space size for all the sub
processes on any such path to the total available main memory. 

Note that when constructing a full map, it is never necessary to move any

thing, since when D is swapped in, say, the space required by A and C 

is known whether or not they are swapped in also. 

System Extendability 

In the two concluding sections we present some thoughts on the general 

properties which we should expect an operating system to possess if it is 

to be a firm foundation for the construction and operation of software 

(including itself), and on methods for realizing these properties. 

If a system is to evolve to meet changing requirements, and if it is to 

be flexible enough to permit modularization without serious losses of effi-



15 

ciency, it must have a basic structure which allows extensions not only 

from a basic system but also from some complex configuration which has 

been reached by several prior stages of evolution. In other words, the 

extension process must not exhaust the facilities required for further 

extensions. The system must be completely open-ended, so that additional 

machinery can be attached at any point. 

Secondly, the relations between a module and its environment must be 

freely re-definable. This means that any module, provided its references 

to the outside world are documented, can be run inside an _en~elope which 

intercepts all of these references and re-interprets them at will. In order 

to ensure that external references are documented, it must be normal, and 

indeed compulsory practice to specify each module's environment precisely 

and independently of the module's internal structure. This requirement is 

satisfied by the use of C-lists to define the outside world to a subprocess. 

Thirdly, it must be possible to introduce several layers of re-inter

pretation around a module economicallX without forcing all of its external 

references to suffer re-interpretation by each layer. In other words, a 

capability for extension by exception is required. Furthermore, the system's 

basic mechansism for naming and for calls must leave room for a number of 

higher-level subsystems to make their mark, rather than forcing each new 

subsystem to create and maintain its own inventory of objects. 

To summarize, a usefully extendable system must be open-ended, must 

allow a subsystem to be isolated in an envelope, and must encourage economical 

reuse of existing constructs. Such a system has some chance of providing 

a satisfactory toolkit for others to use. 

System Reliability 

Even more important than a useful system is a functioning one. Since 

we do not know how to guarantee the correctness of a large collection of 

interacting components,we must be able to break our systems up into units 

in such a way that 

a. each unit is simple enough to be fully debugged 

b. each unit interacts with only a few other units 



16 

If this division is to inspire confid~nce, it must be enforced. It is not 

possible to depend on every contributor for good will and a full understanding 

of the rules for intercourse with others. Hence a complete and precise 

p-~-~ection_ system is needed. 

A great deal of flexibilit:}'._ is required in the manipulation of access 

rights. Otherwise the protection facilities will prove so cumbersome to 

use that they will quickly be abandoned in favor of large, monolithic designs. 

It must become a pleasure to write programs which safeguard themselves against 

the inroads of others, or at the very least it must be automatic, almost as 

unavoidable as the use of a higher level language. 

Thirdly, the implementation must be fail-fast: it should detect a poten

tial malfunction as early as possible so that corrective action can be taken. 

The use of unique names with pointers, redundant data structures, parity 

bits and checksums are all valuable devices for warning of impending disaster. 

On the other hand, elaborate and fragile pointer structures, or allocation 

tables which cannot be checked or reconstructed from the devices being allo

cated, are likely to cost more than they are worth. 

More important, perhaps, is a general acceptance of the fact that a 

flexible and reliable system will exact its price. Under ideal cirumstances, 

the price will be paid in careful design and modest amounts of special hard

ware to facilitate the basic operations of the system. More likely, though, 

are sizable amounts of software overhead to make up for basic deficiencies 

in the machine. Beyond a certain point (admittedly not often reached) there 

is little that can be done about this overhead. It can be minimized by 

keeping the goals of a system within reasonable bounds, but tends to be 

increased by the final consideration in reliability. 

This, of course, is simplicity. Figure 8 lists the operations of the 

6400 ECS system. There are about 50 of them, and few are implemented by more 

then a couple of hundred instructions, most by fewer. To convert the system 



17 

they define into one suitable for a general user will take several times 

as much code at higher levels, b.ut it rests on a secure foundation. 

~cknowledgements 

The system design described in this paper is mainly the work of the 

author and Howard Sturgis. Valuable criticism and most of the implementa

tion were provided by Bruce Lindsay, Charles Simonyi, Paul McJones and 

Karl Malbrain. 

References 

1. Dennis, J.B., "Segmentation and the Design of Multiprogrammed Computer 
Systems", J. ACM 12. October 1965. 

2. Dennis, J.B., and E.C. van Horn, "Programming Semantics for Multi
programmed Computation", Comm. ACM §_, 3, March 1966. 

3. Dijkstra, E.D., "The Design of the THE Multiprogramming System", Comm. 
ACM II, 5, May 1968. 

4. Graham, R.M., "Protection in an Information Processing Utility", Comm. 
ACM II, 5, May 1968. 

5. Lampson, B.W., "A Scheduling Philosophy for Multiprocessing Systems", 
Comm. AC© II, 5, May 1968. 

\. !""~ 

6. Lampson, B.W., et al., "A User Machine in a Time-Sharing System", 
Proc. IEEE 54, 12, December 1966. 



Ten peripheral process.ors 
and memories 

INPUT/OUTPUT DEVICES 

Figure 1: Dual 6400 Hardware Configuration 

18 

Ten peripheral processors 
and memories 

I ___ , ___ _ 



File 

Process 

Event Channel 

Capability list (C-list) 

Operation 

Class code 

Allocation block 

Figure 2: Types of Objects in the ECS System 

19 



/ 

I Name 

Subprocess . --------------·-------~---' Map 

State (central registers) 

Call stack 

Resources (CPU time, storage) 

Working C-list 

l
'. Father 

_ Error mask 

Figure 3: Components of a Process 

20 



TYPE 
I OPTION 
I B.ITS 

UNIQUE NAME ~ MOT ~ __ .. 
______ ___.,c..c..:?Llfill..EX_L \ 

Capability 

r----------

! POINTER Ttj ______________ .,. _u:::_rq_uE_N~ __ E __ _,._I _QfilECT__ __ 

1 
' 

Master Object Table 

Figure 4: The Structure of a Capability 

21 



22 
Unique 

?r2e __Qp_t_ig_t1 __ :t-J_am_e _ 

1 !File 1010 6341 

2 /File 0011 2533 

3 lop 0000 6677 

4 
I 

0001 2431 jProcess 

I 

Prototype Actual 
Parameters: 

Working C-list 

(Input Parameters 
to call operation 6677) Operation 66 77 Actual Parameters: 

2 

r;---- 1. 

I Action . . . 

__ _}____ --~ - j ___ _J 
__ _? ________ -- ------+! _ [He ~OJ> tions. 0010 ___ _ --· ·I __ File_ _QOlL 2533 ! 

163 -- 1---]Jata word 1_ ---::.:: _____ :_:_: _________ 
1

1 

__ 4 ____ .____; ~ _!:ixe,l_<!;,_sa __ w_c,r_d 76_5_ -- 1-- --- . - . - -
_ Process_i_o_ptfon 0000 .. ____ Process 0001 2431 

1 

0 

3 

___ Fixed file 2212..1._oR0-on_HOl ___ !~~-- 1101 22121 

Figure 5: Calling an operation 



Memory 
addres.s File 

File 
address Lens;th 

'-'< 

0 

0 

1000 

1000 

F 

G 

I' 
I 

I 
I 

I/ ____ __, 

··-----------1 

File F 

0 ------------

500 

File G 

0 

0 

The Map 

· ... > 

1000 

500 

Main memory 

Figure 6: Operation of the Map 

0 

1000 

1500 

R/0 Fla~ 

1 

0 

23 



Subprocess Tr.ee 

Memory 
for A 

Memory 
for C 

Memory 
for D 

One possible full map for A 

Figure 7: Full Maps 

24 



create file 

delete file 

create file block 

delete file block 

read shape 

test for file block 

move block 

file-to-file copy 

read from file 

write on file 

create event channel 

delete event channel 

send event 

read event 

create C-list 

delete C-list 

display capability from 
C-list 

display capability from W 

copy capability and 
decrease options 

copy capability into W 

copy capability out of W 

create process 

delete process 

display state 

send interuupt 

create subprocess 

destroy subprocess 

return 

failure return 

jump return 

set map entry 

change map entry 

display map entry 

set ESM 

set program counter 

create ~iii~ ~f order 1 

fix PS to data 

fix PS to capability 

copy operation 

add order to operation 

delete operation 

Figure 8: ECS System Operations 

25 

create allocation block 

delete allocation block 

transfer funds 

create capability for 
first object owned by 
block 

create new class code 

change temporary part 

save registers 

restore registers 

change unique name of 
object 



~ress Report on CAL Time-Sharing System 

(.lO/.lJ/69) 

26 

Currently the ECS system is operative. About four months of work 

and an equal amount of documentation remain to be done on it. There is 

a provisional executive program running on top of the ECS system allowing 

TSS to be written Gn itself (see Figure 1). Currently TSS has enough CPU 

to support 60 systems progranuners (or about 150 ordinary users). However, 

there is only enough ECS for about 10 active processes. There are 6 tele

types connected to TSS. We are confident that TSS will gracefully support 

200 student users when it is complete. 

The design of the disk system is almost complete. Implementation has 

begun recently and should be complete by February 1. This project is in 

series with a disk driver program which will be available in mid-December. 

With the advent of the disk system, a new provisional executive will be 

written. At that point TSS will be able to support many (~ 60) users. We 

plan to offer TSS service to persons who can provide their own teletypes 

and who are developing subsystems (e.g., Basic, CAL, APL, FORTRAN, .... ). 

The directory system is in the preliminary design stages. A reason

able guess of its delivery data is mid-sununer 1970. 

A background batch system it under development. It will run simple 

SCOPE jobs (no tapes) and will be SCOPE-compatible. It requires routines 

to drive card readers and printers, a display driver and a dayfile generator. 

Almost all other work to interface SCOPE with TSS is done in the SCOPE si-

mulator now running. 

To facilitate systems programming, one software subsystem (not part 

of TSS) is being implemented. It is an assembler/debugger called Cool Aid. 

The assembler has an Algol syntax and an elegant macro-facility. It is 

designed to be very fast (~ 10 times faster than Compass) and compact, and 

is re-entrant. It will feed a loader which is SCOPE-compatible. There 



27 

will be a run time interactive debugger which will allow the teletype to 

examine and modify (symbolically) a running program without complete 

reassembly. 

Also under development is a sophisiticated editor. Members of the 

CS :1ntl EECS departments are. supervising the development of a BASIC and 

an APL. 

Proposed for next year are a JOSS-like language, FORTRAN and ALGOL 

syntax checkers, and possibly an interactive SNOBOL4. 

Figure 1 

Current Status (October 10, 1969) 

ECS system 

Prov1sional conunand processes 

SC~ TJxt ed~eletype I ~ (provisional) I/0 

COMPASS •.. SNOBOL 

Projected Status (February 28, 1970) 

ECS system 

;re !disk sys te.1" _ 

provisional command 

//°°\~ 
SCOPE EDITOR Assembler/ tape 
/ 11 ""' (new) debugger printer 

card reader 
teletype 
I/0 routine 

(Bead) 

driver 

SCOPE batch 
processor 

ape 
driver 




